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Abstract Members with non-prismatic geometry are commonly used in building or bridge structures. One of the 
important checks in the process of design of this type of members is the control of their buckling load capacity. 
In this paper, the backpropagation feed-forward artificial neural networks are implemented to predict the ultimate 
load capacity of tapered beam-columns. For this purpose, 1260 models with different cross-section geometry, 
boundary condition and initial geometry imperfection are created and used for training purposes of neural 
network. Result shows that over 95 percent of predictions were between 0.9 to 1.1 times the actual values.  

Index Terms Ultimate Load Capacity; Tapered beam-columns; Artificial Neural Networks. 

1. INTRODUCTION 

Utilization of non-prismatic or tapered members 

as beam, column, or beam-column member in a 

structure causes a smooth stress distribution along the 

member and reduces the consumption of materials [1]. 

These are the two most important reasons that lead 

designers to use this type of member’s configuration.  

Literature of last couple of decades includes 

several researches in which the structural behavior of 

this type of elements has been examined. Performed 

researches include the topic of torsional buckling, 

flexural buckling, and free vibration analysis of 

tapered members [2-5]. 

When tapered member acts as a beam-column, 

then, considering the effects of axial load on stress 

distribution along the beam becomes important. In this 

situation, the buckling load of a tapered beam-column 

member becomes as one of the important design 

checks. 

There are some researches in literature that has 

studied the concept of buckling and instability of 

tapered beam-columns [6-11]. The implemented 

methods of studies in these articles could be classified 

into two major groups: 

 Numerical modeling, and 

 Close-form solutions 

Numerical modeling methods, such as the finite 

element modeling, are one of the analysis methods in 

which the tapered member is divided into a number of 

uniform elements and the ultimate load is calculated 

by using this step model. The buckling load can be 

achieved by finite element analysis, although, it is still 

time consuming and lowly efficient especially when 

tremendous number of members exist in the 

considered system [6-8]. 

 

 

Another studied method is to find a close-form 

solution for the governing differential equation [1, 4, 

9-11]. Because of existence of many boundary 

conditions and nonlinearity in this problem, it is tough 

to find a theoretical solution. Moreover, resultant 

theoretical solution is not that much handy to be used.  

According to the best knowledge of authors, 

proposed methods are based on either numerical 

modeling or closed-form solutions which both are not 

efficient. Hence, it seems that it is worthy to find a 

reliable and fast method for prediction of buckling 

load of non-prismatic members. 

Artificial neural network as a well-known method 

in the field of artificial intelligence is an analytical 

model which is a mimic of human neural system and 

its input/output association. This is a powerful pattern 

recognizer and is particularly suitable for solving 

complex problems. There different types of ANN in 

the literature [12, 13].  Each model is designed for a 

specific purpose. Back propagation feed-forward 

artificial neural network is one the most common type 

of ANN which is a cost effective and less time 

consuming mean of predicting the results of 

complicated functions. MATLAB has a complete 

toolbox for ANN. This toolbox has applicability in a 

variety of research fields [14, 15], especially in Civil 

Engineering [16, 17]. 

When mathematical explicit formula of a function 

is unavailable or tough to be achieved, but, a finite 

number of input/output functional relations of 

considered function are known, artificial neural 

networks are capable of modeling and mimicking 

these relations and establish these relationships to 

predict the solution for a new input vector. This is 

achieved by training the artificial neural network on a 

known dataset. 
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A backpropagation feedforward artificial neural 

network contains three layers; input layer, hidden 

layer(s), and output layer. The process of training 

includes weight adjustment and statistical optimization 

of predefined variables inside these layers. After 

achieving a trained neural network, its performance 

will be evaluated based on testing data.  

Goal of this paper is to use the artificial neural 

networks to predict the ultimate load bearing capacity 

of tapered beam-column. For this purpose, different 

models of non-prismatic members are created and 

their ultimate loads are calculated. Then, a twin 

member, which has the same configuration as original 

member, but, its cross-section is prismatic is created 

for each model and its ultimate load is calculated. 

Finally, the ratio of ultimate load of original member 

over its twin is calculated. The ANN is trained based 

on these data. Resultant trained artificial neural 

network can be used to predict the ultimate load of any 

new tapered beam-column. 

2. PROCEDURE OF ANALYSIS 

Zeinali et al. [4] presented the general solution of 

the arguments of the stiffness matrix of a tapered 

beam-column when both axial and lateral load exist. 

By using Chebyshev polynomials method the closed-

form solution for this model has been found in 

reference [4]. 

Utilizing this method, a second order analysis of 

tapered beam column is performed to achieve the 

relationship between the axial load and lateral 

deflection, i.e., P-Delta curve. In this model, an axial 

load is applied on one end of the member and an 

initial geometry imperfection is considered for whole 

member. Because of existence of this initial 

imperfection, axial load will create a secondary 

moment along the member. For that reason, if a 

second order analysis is performed on this member, 

then, increasing the axial load will increase the mid-

span deflection. 

In this research, the magnitude of axial load is 

increased incrementally and the corresponding lateral 

movement of the mid-span of the beam is monitored. 

Eventually, by plotting these load values and 

corresponding deflections, the so-called P-Delta curve 

could be achieved. 

As it can be seen from this plot, resultant curve 

smoothly converges to a specific value. This value is 

called the buckling or ultimate load capacity of the 

member. By this method, the buckling load of all 

models has been calculated. A typical form of 

resultant P-Delta curves is illustrated in Fig. 1. In this 

figure, the limit of convergence of curve is presented 

by dashed line. This curve converges to the lowest 

value that is calculated by Eigen value problem.  

Then, another model with the same boundary 

condition and initial imperfection is created. The only 

difference in this new model is that member is not 

tapered and has a uniform cross-section. The moment 

of inertia of this new member is the average of all 

cross-sections in original tapered beam. 

The theoretical solution of buckling load of a 

member with uniform cross-section with different 

boundary conditions is already studied. The goal of 

this paper is to predict the ratio of buckling load of 

tapered beam over the buckling load of its twin beam-

column which has uniform cross-section. 

In this study, a member with I-shape cross-section 

is considered. The member is divided into four 

segments. End of each segment is considered as a 

station. This shape of cross section at each station is 

known, although, just the depth of I-shape cross-

section varies along each segment. The moment of 

inertia at the first cross-section is considered equal to 

   and the values for other stations are defined based 

on first station. Considered values for second moment 

of inertia for stations 2 to 5 are presented in Table 1. 

Member has one span. So, geometrical boundary 

conditions are defined at the end of the beam. Each 

end has three degrees of freedom. Although, left end is 

always assumed to be fixed in x direction and right 

end translation in x-direction is assumed to be always 

free. By this assumption, Boundary conditions that are 

tabulated in Table 2, are the remaining possible ones 

and all are considered in this study. 

Another variable along considered models is the 

magnitude of initial geometrical imperfection. Higher 

value for this imperfection tremendously reduces the 

ultimate load capacity or buckling load of member. In 

this study, a sine wave with maximum deflection at 

the center of the beam was considered. For the 

maximum deflection,   , 6 different values are 

  

Fig. 1.   A typical P-Delta curve. 
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considered. Considering all variables, totally 1260 

instances of input and output vector would be made. 

Table 1.  Assumed second moment of area. 

Case             

1                                
2                                
3                                
4                                
5                                

 

Table 2.  Assumed boundary conditions. 

Case             

1         
2         
3         
4         
5         
6         

 

Input vector is a vector with ten components.  The 

definition of each component is as below: 

Input=(
  

 
 
  

  
 
  

  
 
  

  
 
  

  
             

  

 
) (1) 

In which,   is the span length,    is the initial 

geometry imperfection at the center. Other values can 

be achieved based on values inside Tables 1 and 2. 

The corresponding output to each input vector is 

the ratio of ultimate load of tapered beam-column over 

the ultimate load of its twin beam.  

Output=(
          

       
) (2) 

A standard feed-forward backpropagation neural 

network with 10 neurons in the first hidden layer and 

one neuron in the second hidden layer is used. Using 

stratified cross-validation technique, 70 percent, 15 

percent and 15 percent of dataset is dedicated to 

training, validation and testing stages respectively. An 

error function in the form of the sum of the squares of 

the errors between the calculated outputs from the 

actual value of targets is defined and iteratively 

minimized. 

3. Results 

Figure 2 presents the structure of considered artificial 

neural network. It can be seen that considered transfer 

function of hidden layer is a tangent hyperbolic 

function while the transfer function is a linear function 

in output layer. There 10 neurons in input layer, 10 

neurons in hidden layer, and one neuron at the output 

layer. By this configuration, there will be below 

number of unknown coefficients in this artificial 

neural network: 

 

No. of unknowns=           

         
(3) 

So, there will be 121 number of unknown in this ANN 

which is a logical selection comparing to 1260 number 

of training and testing instances. This relation between 

number of unknowns and number of training instances 

guarantees that no over-fitting problem will be 

occurred. 

Figure 3 shows a line graph of mean square error 

(MSE) for training versus the number of epochs. The 

training and validation process mostly controlled 

based on these results. It can be seen that the best 

validation performance happened at epoch 33 means 

that process is terminated based on the values resulted 

from this epoch and the testing process starts. 

Figure 4 shows the correlation between the outputs 

and actual targets from dataset. For both curves a 

regression value higher than 0.99 can be observed. It 

means that the resultant ANN will show a very good 

performance. 

 

Presented plot are generated by built-in functions in 

MATLAB toolbox. Besides of these plots, authors 

suggest another plot which illustrated in Fig. 5. Figure 

5 presents the ratio of values predicted by ANN over 

the real values from training and testing dataset for all 

existence samples. Theoretically, this ratio should be 

 

 
 

Fig. 2.   Considered ANN architecture. 

  

Fig. 3.  Mean square error (MSE). 
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equal to one, but, in practice, values between 0.5 and 

1.5 are very good results. 

It can be seen that 95% of the resultant values are 

between 0.9 and 1.1. This means that the trained 

network is capable to give reasonable prediction of 

ultimate load capacity. 

4. Conclusions 

Members with non-prismatic geometry are commonly 

used in building or bridge structures. One of the 

important checks in the process of design of this type 

of members is the control of their buckling load 

capacity. In this paper, the backpropagation feed-

forward artificial neural networks are implemented to 

predict the ultimate load capacity of tapered beam-

columns. For this purpose, 1260 models with different 

cross-section geometry, boundary condition and initial 

geometry imperfection are created and used for 

training purposes of neural network. 

Below conclusions can be drawn based on the results 

achieved in this paper. The ultimate load bearing 

capacity of a tapered beam-column can be achieved by 

finite element method or a close form solution. In this 

paper, another approach has been implemented. In the 

presented method, a series of models with different 

geometry, boundary conditions, and initial 

imperfections configurations is constructed. The 

ultimate load capacity of this set is calculated. 

Also, the ultimate load capacity of twin system of each 

considered model is calculated too. Twin system has 

the same boundary condition and initial geometry 

imperfection configuration except as it cross-section is 

a uniform cross-section. Then, the ratio of ultimate 

load capacity of original model over the twin structure 

will be calculated. An artificial neural network is 

trained based on these inputs and outputs. It has been 

observed that resultant network is able to predict the 

actual targets reasonably acceptable. Using resultant 

network, the ultimate load capacity of a new member 

can be almost accurately predicted. 

  

Fig. 4.  Regression plot for training and testing steps. 

 

 

 

Fig. 5.  ANN prediction accuracy. 
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Result shows that over 95 percent of predictions were 

between 0.9 to 1.1 times the actual values. 
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